Performance Estimates for Venturis and ASME Flow Nozzles: Oxygen

Flow Systems
220 Bunyan Ave.
Berthoud, CO 80513 USA
Phone: 800-466-3569
Fax: 970-532-0748

www.flowsystemsinc.com
Performance Estimates for Venturis and ASME Flow Nozzles

Based on Oxygen at 14.696 psia and 70 deg. F.

\[\frac{Dp}{P1} = 0.471 = \text{Choke Point} \]

Where:
- \(m \) = mass flow (lbm/sec)
- \(P1 \) = Inlet Static Pressure (psia)
- \(P2 \) = Throat Static Pressure (psia)
- \(T1 \) = Inlet Temperature (Rankine)
- \(Dp = P1 - P2 \)
- \(D \) = Inlet Diameter (inches)
- \(d \) = Throat Diameter (inches)

\[\text{Beta Ratio} = \frac{d}{D} = 0 \]
\[\text{Beta Ratio} = \frac{d}{D} = 0.5 \]
\[\text{Beta Ratio} = \frac{d}{D} = 0.75 \]

Flow Function = \[\frac{m \times (T1)^{1/2}}{P1} \times \frac{(R^{0.5})}{(\text{sec} \times \text{psia})} \]
Performance Estimates for Venturis and ASME Flow Nozzles
Based on Oxygen at 14.696 psia and 70 deg. F.

Where;
- \(m \) = mass flow (lbm/sec)
- \(P_1 \) = Inlet Static Pressure (psia)
- \(P_2 \) = Throat Static Pressure (psia)
- \(T_1 \) = Inlet Temperature (Rankine)
- \(D_p = P_1 - P_2 \)
- \(D \) = Inlet Diameter (inches)
- \(d \) = Throat Diameter (inches)

Beta Ratio = \(d/D = 0 \)
Beta Ratio = \(d/D = 0.5 \)
Beta Ratio = \(d/D = 0.75 \)

Flow Function = \[\frac{m \times (T_1)^{1/2}}{P_1} \left(\text{lbm}^* (\text{R}^{0.5})/(\text{sec}^{*}\text{psia}) \right) \]